Code	No. Syml	bol Number:	Invigilator's Sign:	Superintendent's Sign:	
	Sym	bol No. in Words:			
Faculty	: Engineering	g Level: Bachelor	Exam Year:2080 Mangsir	Year/Part: II/I	
Program: Civil Engineering			Mangsh	Subject: Strength of Materials (EG503CE)	
GRO		le Choice Questions)		[10x1=10]	
<i>i.</i> Answers should be given by filling the Objective An <i>ii.</i> Rough can be done in the main answer sheet					
	0				
	iii. The figure in the margin indicate full marks iv. Assume suitable data if necessary				
1)	Which support is commonly found in bridges to accommodate expansion and contraction due to				
	temperature	5			
	a. Roller Sup	port b. Fixed Suppor	t c. Hinged Support	d. Flexible Support	
2)	A determina				
	b. Matrix Inv	ersion Method	b. E	nergy methods only	
	c. Equations	s of equilibrium	d. Ite	erative techniques	
2)	For a plane area, the product of inertia with respect to the y and y aver is given by				
	For a plane area, the product of inertia with respect to the x and y axes is given by a. $Ixy = \int \int (xy) dA$ b. $Ixy = \int \int (x+dA)(y+dA)$				
		$\begin{aligned} & \text{lxy} = \int \int (xy) dA \\ & \text{lxy} = \int \int (xdA)(ydA) \end{aligned}$ $\begin{aligned} & \text{b. } Ixy = \int \int (x+dA)(y+dA) \\ & \text{d. } Ixy = \int \int (xdA) + \int \int (y^*dA) \end{aligned}$			
	c. ixy – jj(x				
4)	A material with stress concentration tends to experience				
	a. Higher localized stresses than anticipated b. Uniform distribution of stress				
	. Lower stress than predicted by theory d. No change in stress distribution				
5)	The relationship between Young's modulus (E), rigidity modulus (G), and bulk modulus (K) for isotropic				
	materials is:	ship between roung :	finioadius (E), rigiaity moa		
	a. E = 2G(1	+ ν), K = E/3(1 - 2ν)	b. E = 3G(1	-2v), K = 2G(1 + v)	
	c. E = 3G(1	+ ν), K = 2G(1 - ν)	d. E = 2G(1	-v), K = 3G(1 + 2v)	
6) The maximum shear stress in a plane stress situation occurs on planes oriented at an angle of:					
	a. 0 degrees	5 D. 45 U	egrees c. 60 degree	es d. 90 degrees	
7) Which type of failure is most likely to occur in a thin-walled pressure vessel due to e pressure?				pressure vessel due to excessive internal	
	a. Yielding of material b. Buckling c. Shear failure d. Creep failure				
	The rotational speed (ω) of a shaft is measured in units of:				
		per second (rad/s)		ons per minute (RPM)	
	b. Hertz (Hz)	d. Meters per sec	ond (m/s)	

Code No. Marks Secured: _____ 6. A B C D 1. A B C D In Words: 2. A B C D 7. (A) (B) (C) (D) **Corrected Fill** Examiner's Sign: _____ Date: ____ 3. (A) (B) (C) (D) 8. A B C D Scrutinizer's Marks: _____ 4. (A) (B) (C) (D) 9. A B C D Incorrected Fill In Words: 🍇 🚯 🕥 🔎 5. A B C D 10. (A) (B) (C) (D) Scrutinizer's Sign: _____ Date: ____

Multiple Choice Questions' Answer Sheet

MANMOHAN TECHNICAL UNIVERSITY

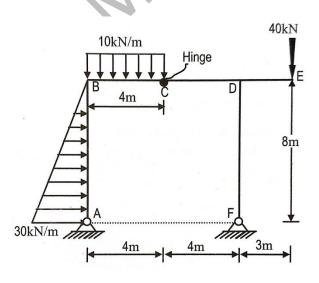
Office of the Controller of Examinations

Budhiganga-4, Morang, Province 1, Nepal

Exam Year:2080 Mangsir

Level: Bachelor

Time: 3 Hours


Faculty: Engineering Program: Civil Engineering

Subject: Strength of Materials (EG503CE

- ✓ Group A contains Multiple Choice Questions of 10 marks.
- ✓ Candidates are required to give their answers in their own words as far as practicable.
- The figures in the margin indicate Full Marks.
- Assume suitable data if necessary.
- 9) The equation for the deflection of a simply supported beam uniformly loaded over its entire length (w) and a span (L) is given by:
 - c. $\delta = wL^4/8EI$ d. $\delta = wL^3/48EI$ a. $\delta = 5wL^4/384EI$ b. $\delta = wL^3/24EI$
- 10) When a column is "slender," it implies that:
 - b. The column is short and stubby
 - c. The column is prone to buckling
- Group B (Attempt any eight questions)
 - 1. Explain Concept of Axial Force, Shear Force and Bending Moment in a section of Beam.
 - 2. Explain Mohr's circle for moment of Inertia of a section.
 - 3. Elaborate Stress-Strain diagram of mild Steel.
 - 4. What is Stress Concentration? What effect is Produced in brittle material due to stress concentration?.
 - 5. Explain Principle stress and Principle plane.
 - 6. Explain the different type of Stresses in thin walled cylinder.
 - 7. Explain about shaft, torsion, torque and angle of twist.
 - 8. Write down about section-modulus.
 - 9. What is effective length of column?

Group C(Attempt all questions)

- 10. Draw axial force, Shear force and bending moment diagram for the given frame. Indicate Salient points if necessary(Figure-1) [8]
- 11. Find the principal axes and principal moments of inertia for the given section. (Figure-2) [4]

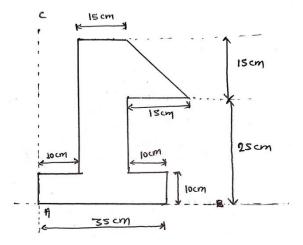


Figure-2

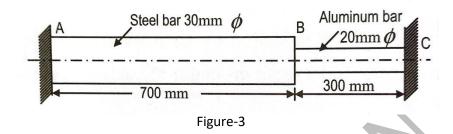
[8*2=16]

b. The column is long and slender

d. The column is perfectly stable

Year/Part: II/I

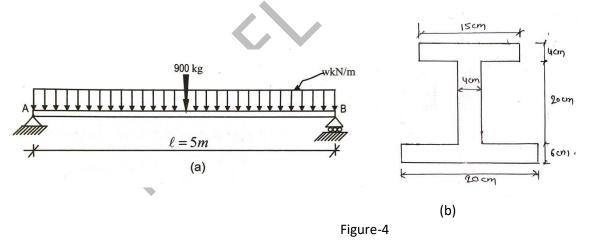
F.M.: 50


P.M.: 20

MANMOHAN TECHNICAL UNIVERSITY Office of the Controller of Examinations

Budhiganga-4, Morang, Province 1, Nepal

 A composite bar made up aluminum and steel is fixed between support as shown in figure. The bars are stress-free at a temperature of 40°C. Determine the stresses in the two bars when temperature falls 15°C, if (a) The support are unyielding and (b) the support comes nearer to each other by 0.1mm. (Figure-3) [4]


> Take: Es=2.10 x10⁵N/mm² and G_s =11.70 x10⁻⁶/°C Take: E_A=0.74 x10⁵N/mm² and G_A =23.40 x10⁻⁶/°C

Write down assumptions and Derive torsional Equation of Solid Circular shaft. [4]
 Or

Write down assumptions and Derive Euler's Formula when both end of the column are hinged. [4]

A simply, Supported Beam of length 5m is carrying a UDL of w KN/m. The cross-section of the beam is given below. If permissible bending stress are 160 kg/cm² in tension and 200kg/cm² in compression. Find the moment of resistance of the section, actual maximum stress and external UDL (w) carrying capacity of the beam if 900kg point load at center is applied.(Figure-4)

***** <u>All the Best</u> ***